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ABSTRACT 

Liquid i n  a p a r t i a l l y  f i l l e d  container has a s t rong tendency t o  
"slosh" about even under the s l i g h t e s t  disturbance. The mathematical 
theory fo r  t h i s  l i qu id  motion i s  presented fo r  c y l i n d r i c a l  tanks with 
r i n g  sec to r  c ross  sect ions.  
theory t r e a t i n g  the l i qu id  as incompressible, i r r o t a t i o n a l  and non- 
,viscous. Natural frequencies,  surface displacement, pressure and 
v e l o c i t y  d i s t r i b u t i o n  i n  the containers ,  a s  w e l l  as f l u i d  forces  and 
moments, are presented fo r  var ious forced v ibra t ions .  

It is  based on l i nea r i zed  p o t e n t i a l  



GEORGE C. MARSHALL SPACE FLIGHT CENTER 

MTP--0-62-1 

January 2,  1962 

THEORY OF FLUID OSCILLATIONS IN PARTIALLY 
FILLED CYLINDRICAL CONTAINERS 

H e l m u t  F. Bauer 

DYNAMICS ANALYSIS B R A "  
AEROBALLISTICS DIVISION 



PREFACE 

The information contained i n  t h i s  r epor t  was presented by 
M r .  Helmut F. Bauer a t  a seminar a t  the Department of  Engineering 
Mechanics, University of Alabama, Tuscaloosa, on November 1 7 ,  1961. 
M r .  Bauer i s  Chief,  F l u t t e r  and Vibration Section, Aeroba l l i s t i c s  
Division, George C. Marshall Space F l igh t  Center, NASA, Huntsvi l le ,  
Alabama, and Associate Professor of Engineering Mechanics a t  the  
University of Alabama, Huntsvi l le  Center. 

ii 



TABLE OF CONTENTS 

Page 

S W Y .  * 0 0 1 

I. INTRODUCTION.. ............................................... 1 

IV. FORCED OSCILLATIONS 
A. Translational Oscillations. ............................. 12 
B. Rotational Oscillations..................o..~o......~... 20 
C. Roll OscillatLons....................................... 22 
D.' Special Case............................................ 29 

ApPEM>IX......................................................... 44 

iii 



LIST OF ILLUSTRATIONS 

Figure 

1. 

2. 

3 .  

4 .  

5. 

6.  

7 .  

8. 

9 .  

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

T i t l e  Page 

Free Fluid Surface o f  the  Liquid i n  a Cyl indr ica l  
Container with Ci rcu lar  and Annular Cross Section . . . . . .  1 

Free Fluid Surface o f  the Liquid i n  a Ci rcu lar  
Cyl indr ica l  Quarter Tank ............................... 2 

Mass Flow Through a Closed Surface ..................... 4 

Tank Geometry .......................................... 9 

Natural Frequencies o f  a Liquid i n  a Cyl indr ica l  
Container ............................................... 11 

Natural Frequency of  Propellant versus F l igh t  
T i m e ,  - ................................................. 12 

Free Fluid Surface Displacement i n  a Ci rcu lar  Cylin- 
d r i c a l  Tank fo r  Various Exciting Frequencies ........... 31 

Free Fluid Surface Displacement (Magnification 
Factor) ...........................*.................... 31 

Fluid Forces (Magnification Factor)  .................... 32 

Fluid Moments (Magnification Factor)  ................... 33 

S h i f t  of  Center of Gravity During Osc i l l a t ion  .......... 34 

Fluid Force fo r  Trans la t iona l  Exci ta t ion  i n  x- 
Di rec t ion  of  a Liquid i n  a Quarter Tank ................ 35 

Fluid Moment fo r  Trans la t iona l  Exci ta t ion  i n  x- 
Direction of  a Liquid i n  a Quarter Tank ........... .... 
Fluid Force f o r  Rota t iona l  Exci ta t ion  Along the y-Axis 
i n  a Quarter Tank ...................................... 

36 x 
37 

Fluid Moment for  Rotational Exci ta t ion  Along the  y- 
Axis i n  a Quarter Tank ................................. 38 

Fluid Forces for  Rol l  Exci ta t ion  of a Quarter Tank ..... 39 

Fluid Moment fo r  Rol l  Exci ta t ion  of  a Quarter Tank ..... 39 

Fluid Moment f o r  Rol l  Exc i t a t ion  o f  a Quarter Tank. .... 40 

i v  



GEORGE C. MARSHALL SPACE FLIGHT CENTER 

I I I I 
I 

ej - -- - -j., 

MTP-AERO-62-1 

THEORY OF FLUID OSCILLATIONS IN PARTIALLY 
FILLED CYLINDRICAL CONTAINERS 

by Helmut F. Bauer 

SUMMARY 

Liquid i n  a p a r t i a l l y  f i l l e d  container has a s t rong  tendency to 
"slosh" about even under the  s l i g h t e s t  disturbance. The mathematical 
theory f o r  t h i s  l i qu id  motion is  presented f o r  c y l i n d r i c a l  tanks with 
r i n g  sec to r  c ross  sect ions.  
theory t r e a t i n g  the  l i qu id  as incompressible, i r r o t a t i o n a l  and non- 
viscous. 
ve loc i ty  d i s t r i b u t i o n  i n  the  containers ,  a s  w e l l  as f l u i d  forces  and 
moments, are presented f o r  var ious forced vibrat ions.  

It is based on l i nea r i zed  p o t e n t i a l  

Natural frequencies,  sur face  displacement, pressure and 

I. INTRODUCTION 

Fuel s loshing i n  the tanks of  a space vehic le  o r  m i s s i l e  w i l l  a f f e c t  
the performance and s t a b i l i t y  of the vehicle ,  leading i n  extreme cases 

,c--- -. 
/ '. 

I 

BEFORE FIRST RESWANCE %FORE SECO(I0REfOllUlCE 

Figure 1. Free F lu id  Surface of the Liquid i n  a Cyl indrical  
Container with Circular  and Annular Cross Section 
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Figure 2 .  Free Fluid Surface of  the Liquid i n  a Circular  Cyl indrical  
Quarter Tank 

to  catastrophe. Since more than 90% of the t o t a l  weight of the  veh ic l e  
a t  launch i s  l i qu id  propel lan t ,  l i qu id  s loshing represents  a major i t e m  
requir ing spec ia l  a t t e n t i o n  even i n  the  preliminary design s tage  of  
space vehicles .  The tendency toward a continuous increase i n  s i z e  of 
modern space vehic les  makes an inves t iga t ion  of t h i s  kind even mandatory. 
I f  the na tu ra l  frequencies of the  propel lan t  i n  the tanks are c lose  t o  
the  control  frequency of the veh ic l e ,  the lower modes of the  e las t ic  
v ib ra t ion  - say the fundamental body-bending modes - o r  to  the  na tu ra l  
frequency of  the control  sensor,  the  problem obviously becomes acute. 
Moving propel lant  exerts forces  and moments on the  vehic le ,  which may 
s a t u r a t e  the control  system and thus lead t o  f a i lu re .  It i s  f o r  t h i s  
reason t h a t ,  for  a r e a l i s t i c  dynamic s t a b i l i t y  and cont ro l  ana lys i s ,  the  
e f f e c t  of the  o s c i l l a t i n g  propel lan t  has t o  be considered. "Sloshing" 
i s  the term usual ly  applied t o  a type of l i qu id  motion r e s u l t i n g  prim- 
a r i l y  from t r ans l a t ion ,  p i tch ing ,  or  bending motions of  the tank. The 
f r e e  o s c i l l a t i o n  of a l i q u i d  wi th  a f r e e  f l u i d  surface as w e l l  as the  
response of t h a t  l i qu id  due t o  these exc i t a t ions  w i l l  be t rea ted .  

1 

I 

11. DERIVATION OF BASIC EQUATIONS 

Since cy l ind r i ca l  tanks with c i r c u l a r  sec tor  c ross  sec t ions  are 
universa l ly  used, they a r e  most important. An exact  so lu t ion  of the  
problem of  l i q u i d  o s c i l l a t i o n  wi th  a f r e e  f l u i d  sur face  i n  a container  
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is  p r a c t i c a l l y  impossible. For s impl i f ica t ion ,  the l i qu id  is assumed 
t o  be incompressible, f r i c t i o n l e s s ,  and i r ro t a t iona l .  These assumptions 
are j u s t i f i e d  s ince  the  r e s u l t s  descr ibe the dynamic behavior of  the 
l i q u i d  very w e l l ,  as long a s  the  forcing frequency is not  too c lose  
t o  the  n a t u r a l  frequencies of  the  l i qu id  system. 

The equat ion of  motion of  a l i qu id  p a r t i c l e  is obtained from t h e  
equation of  Newton: 

- =  dv. - L grad p 
d t  P 
3 

where K represents  the  e x t e r i o r  force  p e r  un i t  m a s s .  
of a l i q u i d  p a r t i c l e  i s  

The acce le ra t ion  

3 
and it i s  wi th  the  acce le ra t ion  vec tor  g as the  e x t e r i o r  force  per 
u n i t  m a s s  

3 
+ 2  4 4 1  4 av + $ grad v - [v x c u r l  v ]  + - grad p = g. a t  P (3)  

These equat ions represent  a system of three non-finear p a r t i a l  
d i f f e r e n t i a l  equations i n  which the  f i v e  values v = (u,v,w), p and p 
are unknown. Since the  l i q u i d  i s  considered t o  be incompressible, t h e  
m a s s  dens i ty  i s  constant+and known. 
solve the  four unknowns v and p. A four th  par t ia l  d i f f e r e n t i a l  equation 
can be obtained by the  p r inc ip l e  of  m a s s  conservation (cont inui ty  
equation). 

W e  need only four equations t o  

The m a s s  flow through a closed surface without s inks  and sources 
is zero. This can be expressed by the  following expression 

JJp vn dS= 0 

S 

wi th  Gauss Theorem 
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Figure 3 .  Mass Flow Through a Closed Surface 

w e  ob ta in  for  the previous in t eg ra l  

V 

fo r  an a r b i t r a r y  volume. From t h i s  we conclude t h a t  everywhere 
div(p8 = 0. 
obta in  the cont inui ty  equation 

Since the mass dens i ty  i s  considered t o  be constant ,  we 

3 
div  (v) = 0 (4) 

The equations (3)  and ( 4 )  are with given boundary and i n i t i a l  condi t ions 
s u f f i c i e n t  t o  determine the  ve loc i ty  components u ,  v ,  and w and the  
pressure p. uniquely. 

Assuming the  flow t o  be i r r o t a t i o n a l  

c u r l  v = 0 
3 
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the  flow f i e l d  can (due t o  the iden t i ty  cur l  grad* OJ be represented 
by a v e l o c i t y  p o t e n t i a l  @. From t h i s  ve loc i ty  f i e l d ,  v can be obtained 
as 

+ 
v = grad @ 

From t h i s  equation and the cont inui ty  equation, it can be seen t h a t  
t h e  v e l o c i t y  p o t e n t i a l  i s  a so lu t ion  of the Laplace equation. 

& = O  (5) 

This r e s u l t  represents  a g rea t  s impl i f ica t ion  i n  the treatment of  t h e  
problem s ince  the  ve loc i ty  f i e l d  can be obtained by one funct ion .cb 
only,  which s a t i f i e s  a l i n e a r  p a r t i a l  d i f f e r e n t i a l  equation. Further 
s impl i f i ca t ion ,  which follows from t he  assumption of  the i r r o t a t i o n a l  
flow, can be obtained from equation (3) which can be w r i t t e n  i n  the  
following form: 

i n  which the  force  per un i t  mass is  i n  negative z d i r e c t i o n  and the  
dens i ty  is considered t o  be constant. 
leads t o  the  in s t a t iona ry  Bernoulli  equation of t he  form 

The in tegra t ion  of  t h i s  equation 

- + - v 2 + E + g z = 0 .  a0 1 
a t  2 P 

The p o t e n t i a l  equation (5) and the Bernoulli equat ion (6) s u b s t i t u t e  
t he  cont inui ty  equation (4) and the equation of motion (3). Once t h e  
p o t e n t i a l  is  obtained, a l l  other  values  can be determined with it. 
The ve loc i ty  d i s t r i b u t i o n  is  obtained by d i f f e r e n t i a t i o n  wi th  r e spec t  t o  
the  spac ia l  coordinates of the  so lu t ion  of  the d i f f e r e n t i a l  equation (5). 
The pressure p i s  obtained from equation (6). For a fixed or movable 
boundary T (x ,y ,z , t )  = 0, the  boundary conditions can be obtained by 
s e t t i n g  the  normal ve loc i ty  of  the l i qu id  a t  t h e  boundary equal t o  the 
normal v e l o c i t y  of  the  boundary i t s e l f  v = vN. This r e s u l t s  i n  n 

3 T  + w - = o  - =  i3T a T  a T  
aZ dT - + u - + v -  

d t  a t  ax aY 
(7) 

dT a + 
- =  (x + V grad) T = 0 d t  o r  
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For fixed time-independent container  w a l l s ,  the  boundary condition 
reads 

a t  T. 

Another boundary with the  treatment of l i qu id  o s c i l l a t i o n s  i n  a p a r t i a l l y  
f i l l e d  container i s  t h a t  a t  the  f r e e  f l u i d  surface.  
such a surface on which the pressure p is  given i s  described by 

I f  the  equation of 

then it  i s  for  a f l u i d  p a r t i c l e  a t  the surface 

, and it is  with (T) 

aF 0 d t  a t  ax a Y  a t  dF aF aF aF - = - + u - + v - + w - =  

and 

a t  the  f r e e  surface 
< 

Furthermore, w e  ob ta in  with 
a t  the  f r e e  surface 

the  Bernoulli  equation ( 6 )  the  pressure 
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From this we conclude for the pressure p = 0 that 

This is the boundary condition that is obtained with Bernoulli's 
equation (dynamic condition), while equation (8) represents a kinemat.ic 
condition. 
ments and derivatives of those, the velocity potential CP and the free 
surface displacement 5 can be represented as series - 

Assuming small velocities and small free surface displace- 

and 

where E is a small value. 

From this we conclude that @ is a solution of the Laplace equation A 

Neglecting second order and higher terms we obtain from equation (10) 
with equations (11) and (12), that c0 = 0 and 

1 8% 
= - -- at z = c O = O  

c 

g at 

and from equation (8) we obtain 

Elimination of 5 results in the boundary condition for the free fluid 
surface: 
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The displacement of the f r e e  f l u i d  sur face  i s  

(14) p - -  1 a@ 
g ( Z ) z = O '  

/--- 

We thus obta in ,  for  the so lu t ions  of the incompressible, i r r o t a t i o n a l  
and f r i c t i o n l e s s  l i qu id  i n  a s ta t ionary  Container with f r e e  f l u i d  surface,  
the  following equations: 

A0 = 0 
._ 

- =  0 a t  the tank w a l l s  an  

a t  the f r e e  f l u i d  surface.  a2Q - +  gg= 0 

a t2  

The las t  boundary condition i s  the only one t h a t  has been l inear ized .  
For moving containers  the  bas ic  equations can a l s o  be derived i n  a 
similar way. Here the boundary condi t ions of the  container  w a l l s  must 
a l s o  be l inear ized .  The so lu t ion  of the Laplace equation cons i s t s  of 
the  p o t e n t i a l 0 0  of the  motion of the  i n f i n i t e l y  long container (which 
i s  assumed t o  be small) and the dis turbance p o t e n t i a l  Jr  of  the  motion 
of the l iqu id .  The ve loc i ty  po ten t i a l  0 can therefore  be presented as 

0 = + Jr .  (16) 
- c 

The disturbance po ten t i a l  I) is  due t o  s m a l l  t r a n s l a t i o n a l  and r o t a t i o n a l  
container motions which d i s tu rb  the  f r e e  f l u i d  surface.  We obta in ,  
therefore ,  the  equations fo r  so lu t ion  of the l i qu id  with a f r e e  f l u i d  
surface due t o  forced o s c i l l a t i o n s  of the container.  

ha = 0 
-- 

= normal ve loc i ty  a t  the  container  w a l l  - a0  
at  the  container  w a l l  = 

(17) 
- 
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a + g 9 = 0 a t  the  f r e e  f l u i d  surface 
a t2  

_- - 
111. FREE OSCILLATIONS 

The flow f i e l d  of a l i qu id ,  with f ree  f l u i d  sur face  i n  a c i r c u l a r  
c y l i n d r i c a l  r i n g  sec tor  tank with f l a t  tank bottom having a vertex 
angle 2Xa, i s  obtained from so lu t ion  of  the  Laplace equation wi th  t h e  
appropr ia te  l i nea r i zed  boundary conditions. - 

I 
I 
I 

I 
I 
I 
I 

I 
I 

-2 
Figure 4.. Tank Geometry 

a t  the  tank bottom z = - h 

T 

h I 
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& =  0 a t  the  c i r c u l a r  c y l i n d r i c a l  tank w a l l s  r = a,b. ar  

- l & = O  a t  the  sec tor  w a l l s  cp = 0, 2lla 
r acp 

a + g & = 0 a t  the  f r e e  f l u i d  surface z = 0 
a t2  

W i t h  Bernoullis separa t ion  method i n  dhich the function 9 (r,cp,z,t) is  
wr i t t en  as a product of functions which depend only on one independent 
var iab le  

the so lu t ion  of the  Laplace equation can be found. 
care i n  the  choice of the  separa t ion  constants and t h e i r  s igns  i n  
,order t o  obta in  so lu t ions  which descr ibe  the physics of  the problem. 

One has t o  take 

The ve loc i ty  p o t e n t i a l  which s a t i s f i e s  the boundary conditions of the  
container w a l l  i s  

z h  
cos h [Emn (a + ;)I 

cos h [Emn ,I 

m A RiWmnt cos (E cp) 
h c c  mn 

9 (r,cp,z,t) e = 

m n  

1 

c (kmn m 
2a 

where the  constants A are unknown and can be obtained from the  
i n i t i a l  conditions. mn 
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The va lues  5 a r e  the  p o s i t i v e  r o o t s  of t h e  equation mn 

am ( 5 )  = - 
2a 

i n  which k = b/a 
container w a l l s  . 

J' (Emn) m 
2 a  I - 

2a 

represents  t he  diameter r a t i o  of  t h e  inner and ou te r  
With t h e  free f l u i d  surface condition, one o b t a i n s  

t h e  n a t u r a l  frequency of  t he  l i q u i d  as (Eigen values) 

m,n = 0,1,2,..... 

It can be seen from t h e  frequency equation t h a t  t he  na tu ra l  
frequency o f .  t he  propel lan t  increases w i t h  t h e  square roo t  of  t he  . 
longi tudina l  acce le ra t ion  g and i s  i n d i r e c t l y  propor t iona l  t o  t h e  
square r o o t  o f  the tank diameter. 
acce l e ra t ions  and tank dimensions, most of t he  change i n  frequency 
occurs f o r  shallow propel lan t  depths, i.e., f o r  a f l u i d  height o f  
less than one tank diameter f o r  t he  f i r s t  mode and even less f o r  higher 
modes. Due t o  increasing longi tudina l  acce lera t ion ,  t he  n a t u r a l  
frequency of the  propel lan t  versus f l i g h t  time increases. Only during 
burn ou t  does the  f l u i d  he ight  influence overcome the influence of the  
acce le ra t ion  g and decrease t h e  frequency again. 

For constant longi tudina l  

. - 

k. 0 .............. - 

'n -k*o.z k=$- x 

a 
Figure 5. Natural Frequencies of a Liquid i n  a Cyl indr ica l  Container 
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Figure 6 .  Natural Frequency of Propellant versus  F l igh t  Time 

I V .  FORCED OSCILLATIONS 

The flow f i e l d  of the l i qu id  with the f r e e  f l u i d  surface i n  a 
c i r cu la r  cy l ind r i ca l  r i n g  sec tor  wi th  a f l a t  bottom, due t o  forced 
o s c i l l a t i o n  of the tank, can again be obtained from the so lu t ion  of  
t h e  Laplace equation and the appropriate  l inear ized  boundary condi t ions.  
I n  these cases ,  not only the f r e e  f l u i d  surface w i l l  be l i nea r i zed ,  but  
a lso the tank wal l  conditions have t o  be presented i n  a l inear ized  form. 

A.  Trans la t iona l  Osc i l l a t ion  

For forced o ' sc i l la t ions  of the tank i n  the d i r e c t i o n  of the  x-axis ,  I 

t h e  following s e t  of equations has t o  be solved: 



a@ i w t  
- =  iuxb e cos cp ar 

fo r  cp = 2Ita 

fo r  r ' =  a ,  b 

fo r  z = 0 

I L 

By transformation 

i w t  
ip = {q  + iwxor cos c p }  e 

the  equation can be w r i t t e n  i n  the form 

13 

( 2 5 )  

for  cp = 0, 211~1 
r ar 

The so lu t ion  of the Laplace equation i s ,  with respect t o  the  boundary 
conditions a t  the  tank w a l l s ,  given by [(See (21)] 

0 3 -  z h  
cash [Ernn (2 + 211 

(26) h 
cash [kmn 21 - n=O m=O 2a 

With the  f r e e  f l u i d  surface condition at  z = 0 ,  w e  ob ta in  
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i n  which 

represents  the  square of  the  na tura l  c i r c u l a r  frequency of the system. 
To determine the unknown coe f f i c i en t s  hn, one has t o  expand at the  r i g h t  
hand s ide  of the  previous equation cos cp i n t o  a Fourier s e r i e s  and r i n t o  
a Bessel-Fourier series. The cos cp can be represented as 

m 
cos cp = 

m=O 

with 

s i n  2ITa a =  
0 2na 

m 4a (-1)- s i n  21~a a =  
IT (m2 - 4 s )  m 

The radius  r should be represented i n  a series of the  form 
_ _  . 

co 

i n  which the  coe f f i c i en t s  a r e  given by ..- 

The evaluat ion o f  t h i s  Bessel in t eg ra l  r e s u l t s  i n  
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.- 

a 

2a 

N 2  
m/2a  

i s , represented  i n  the  appendix fo r  integer  and non-integer values  of 
The coe f f i c i en t s  Amn a r e  therefore  

X am bmn o 

<w&/w2-- 1 )  

iw 

*mn = 

and the  ve loc i ty  p o t e n t i a l  for  t r ans l a to ry  exc i t a t ion  of  the  container 
i n  the  d i r e c t i o n  of the  x-axis i s  

The f i r s t  expression i n  f ron t  of the  double summation s a t i s f i e s  the  
boundary condi t ions a t  the  tank w a l l s  while the terms i n  the double 
summation vanish a t  the  tank w a l l s .  
the  double summation, s a t i s f i e s  the  f r e e  boundary condition i f  one 
considers the  r e s u l t s  for  the  na tu ra l  frequencies and the  representa t ion  
of cos cp as Fourier s e r i e s  and of r as Bessel=Fourier s e r i e s .  With t h i s  
obtained ve loc i ty  po ten t i a l ,  one can determinTthe f r e e  surface displace-  
ment, the  pressure and ve loc i ty  d i s t r i b u t i o n ,  and the  forces  and moments 
of the  l i q u i d  by d i f f e r e n t i a t i o n  and in tegra t ion  with respect  t o  the  time 
and spac ia l  coordinates. 
which i s  measured from i ts  undisturbed posi t ion is  

The term r cos cp, together with 

The f r e e  surface displacement of  the  l i qu id  

, 
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The pressure d i s t r i b u t i o n  a t  a depth -z i n  the tank i s  

2a 

From the pressure d i s t r i b u t i o n ,  we ob ta in  by i n t eg ra t ion  the components 
of the l i qu id  forces  and moments, the component of the force i n  x d i rec t ion  
is  

The first  term represents  the force due t o  the  pressure components a t  the 
c i r cu la r  walls,  while the second i n t e g r a l  i s  the  force component due t o  
the  pressure component a t  the sector-wall  cp = 2na. 

This i s  with the  mass of l i qu id  m = p m  a2(1 - k2) h 
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t h e  force  component i n  y d i r e c t i o n  is with t h e  f i r s t  i n t e g r a l  as t h e  force  
component due t o  the  pressure at: the  c i r cu la r  walls, t he  i n t e g r a l  due t o  
t h e  pressure  a t  the  sector-wall cp = 0 and the t h i r d  i n t e g r a l  due t o  the  
pressure  a t  t h e  sector-wall cp = Zm 

_ _  
2 a  0 

Y (ap, - bpb) s i n  Cpa cp dz - jj pvo drdz + 
- b -h 

= J - J  0 -h 

- --- ----=-id 
r r  

cos 2 a  drdz J J pT=2m 7 -cc 
b -h 

which f i n a l l y . c a n  be represented as 
h 

i w t  2 a m b mn [1 - (-11~ cos +I  t a d  (E, --I 
F = - m m 2 e  h 

a f la  (1 - k2) Y 
c m=O n=O 

Here N is  
0 

It can be seen t h a t  t he  term i n  f r o n t  o f  t h e  double summation i n  t h e  x- 
component of  t h e  force  represents  nothing but t he  i n e r t i a l  force. 
moments of  t h e  l i q u i d  with respec t  t o  the  point (O,O,-h/2) are given by 

The 

.II 

2YlQ 0 

M =I J (ap, - bpb) (?+ h z) cos cpd cp dz + r J p c  r2 cos qxl cp d r  - Y 
o -h o b  

a o  
s i n  2m (F h + z )  drdz 
/ 

( 3 4 )  

/ b -h 

where p represents  t he  bottom pressure. 
C 
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The f i r s t  i n t e g r a l  represents  the moment due t o  the  pressure a t  the  
c i r cu la r  walls, while the second i n t e g r a l  i s  nothing but the  bottom 
pressure’s cont r ibu t ion  t o  the  moment. The t h i r d  in t eg ra l  f i n a l l y  i s  
the  moment due t o  the  pressure of the  sector-wall  cp = 2 f i .  - 

Similar ly ,  w e  ob ta in  for  the  moment about the  x-axis 

Where M 
(O,O,-h72) p a r a l l e l  t o  the  y-axis, while M, represents  the moment about 
a s t r a igh t  l i n e  p a r a l l e l  t o  the x-axis through the same point.  

represents  the moment about an ax i s  passing through the point  

The moments a r e  given by 

.? + 
s i n  2 m  cos 2 

2 m  
M = mw2a x 

0 
/- 

Y 

(-l)*’ a m b mn 

(- - 1) ( 1  - k2) 5, 

h 
s i n  2 9 f  W 2  l [ tanh (5, a> + 

mn + 2r(~l  a 
m=O n=O 

/ W2 

a (1 - k3) s i n  2 m  + mg - , . I . ’  

( 1  - k2) 



__ 

2m - M ~ =  -mw2ax e 

-c - m=O n=O 
0 

a 

1 - 111 2 h (  h 
h a b [l - (-l)m cos 2 f l l  m mn ’ I[tanh (5, + - 

W2 

W2 

5, ; cash (em 3 
(= - 1) (1 - k2) tmn 

The last term in these expressions represents the moment of the undisturbed 
liquid about the point (0,0,-h/2). 
by differentiating the velocity potential with respect to the proper 
coordinates and is: 

The velocity distribution is obtained 

c o c o  z h  
iwt m mn _. u = L h =  - iw x e 

0 w2 [sin q + I  7 
-- . m=O n = O  (7 mn - 1) cosh (5, ;) h cp r 

em (Ernn - 
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The ve loc i ty  d i s t r i b u t i o n  i n  the tank can be obtained from these by 
omitt ing the f i r s t  term .in the  parentheses. That i s ,  fo r  the  r a d i a l  
ve loc i ty  component u w e  have t o  omit the t e r m  cos cp, while f o r  the  
angular ve loc i ty  component u These terms 
represent  with the  coeff . ic ients  i n  f ron t  of  the  parentheses nothing but  
t he  tank motion i t s e l f .  S i m i l a r  r e s u l t s  can be obtained for  an e x c i t a t i o n  
along the  y-axis. In  t h i s  case,  s i n  cp appears and has t o  be expanded in to  
Fourier se r ies .  

r’ 
the  t e r m  s i n  cp is  l e f t  out. cp’ 

B. Rotational Osc i l la t ions  

For r o t a t i o n a l  exc i t a t ion  of the  container about one of the  coordinate 
axes, which i s  now taken a t  the  center  of the  sec tor  ax i s  i n  the middle 
between tank bottom and undisturbed f l u i d  surface,  the flow f i e l d  can be 
obtained from the so lu t ion  of the Laplace equation and the  appropriate  
l inear ized  boundary conditions.  The boundary condi t ions fo r  forced 
r o t a t i o n a l  o s c i l l a t i o n s  of t he  container  about the  y-axis are i n  l inear ized  

I 
form 

a t  the  tank w a l l s  ( r  = a,b) i w t  i w  8, e z cos cp a@ - =  - 
ar 

i w t  = i w  eo e r cos cp aZ 
h a t  the  tank bottom (z = - -) 
Z 

(39) 
a t  the tank sec tor  w a l l  ( c p  = 0) 

a t  the  tank sec tor  w a l l  (cp = 2m) 
. C  

h a t  the  f r e e  f l u i d  surface (z = +;) a2Q alp 
p + g - = o  aZ 

. -  
I 

where 8, i s  the amplitude of the exc i t i ng  function. With the transformation: 
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the  boundary condi t ions a t  the tank sidewalls ( r  = a,b,cp = O,+> can be 
made homogeneous. - Solving now the  Laplace equation 

a so lu t ion  can be found which satisfies the homogeneous boundary conditions 
a t  those w a l l s .  
be obtained by s a t i s f y i n g  the  remaining two boundary conditions a t  the  
tank bottom and a t  the  f r e e  f l u i d  surface,  making use of  the  previous 
series expansion for  cos cp, s i n  cp and r. 
can f i n a l l y  be obtained as 

The unknown coe f f i c i en t  & and i n  t h i s  so lu t ion  can 

From t h i s  the  ve loc i ty  p o t e n t i a l  

mi0 n=O 

where 

abmn 2 ‘mn h h ‘mn h 
2 a  sinh (- -1 - (z + cosh (- -)] am 

aw2 r- 2 a  A =  mn w2 h ‘mn mn 
(- - 1 )  cosh (5, 

w2 

‘The expression i n  f ron t  of  the  double summation s a t i s f i e s  the boundary 
conditions at  the container s ide  w a l l s  while the terms under the  double 
summation vanish a t  these boundary conditions. 
together with the  terms i n  f ron t  of it, s a t i s f i e s  the  conditions a t  the  
tank bottom and f r e e  f l u i d  surface. 
‘of the  l i qu id  forces  and moments, the  ve loc i ty ,  and pressure d i s t r i -  
bution can be obtained from the  ve loc i ty  potent ia l .  

The double summation, 

The f r ee  f lu id  surface displacement 
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C. Roll Osc i l la t ions  

For the design of the  r o l l  con t ro l  systems, t he  knowledge o f  t h e  
l iqu id  o s c i l l a t i o n s  i n  cp d i r e c t i o n  i s  very  important. For forced 
exc i t a t ion  of the  container about i t s  sec tor  axis ( z  axis) wi th  the  
amplitude cpo, the  flow f i e l d  can again be obtained from the  so lu t ion  
o f  the Laplace equation wi th  appropriate  boundary conditions.  
o f  the coordinate system again i s  placed i n  the  undisturbed f r e e  f l u i d  
surface with the  z a x i s  being the  sec tor  axis and point ing out  of  t he  
l iquid.  The boundary conditions are: 

The o r i g i n  

& =  0 ar a t  the  container  w a l l s  (r = a,b)  

i w t  - - i w r  cpo e 
r a x -  

a t  t he  container  walls ( z  = - h) 

(41) 
a t  t he  tank sec tor  w a l l s  ( c p  = 0,2m2) 

a t  the  f r e e  f l u i d  surface ( z  = 0) 

/ -- 

Since the  boundary conditions cannot be s a t i s f i e d  by one p o t e n t i a l  
function as i n  the  previous cases, one represents  t h e  ve loc i ty  p o t e n t i a l  @ 
as the sum of  two po ten t i a l s  G = G (r,cp) and F = F (r,cp,z) 

I 

Both funct ions s a t i s f y  the  Laplace equation. 
determined such t h a t  t h e  boundary condi t ions a t  the tank walls r = a,b 
and cp = 0,2m are s a t i s f i e d .  
long tank pEforming r o l l  o s c i l l a t i o n s .  
the boundary .conditions a t  the  tank bottom and a t  the  f r e e  f l u i d  surface 
a re  s a t i s f i e d .  The boundary condi t ions f o r  t he  funct ion G are 

The funct ion G (r,cp) is 

This represents  a so lu t ion  fo r  an i n f i n i t e l y  
With the  funct ion F (r,cp,z), 

- =  aG 0 a t  t h e  tank w a l l s  ( r  = a,b)  ar 

i w  cpo r2  a t  the  sec tor  w a l l s  ( c p  = 0,2nW aG - =  
a9 4 

Those of  t he  funct ion F are given by: 

- =  aF 0 a t  t he  tank s ide  w a l l s  ( r  = a,b)  ar 



aF 
acp 
- =  0 a t  the  sec tor  w a l l  (cp = 0 , 2 a )  

_L 
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(43 )  

a t  the  f r e e  f l u i d  surface ( z  = 0) aF 
g - w2F = w2G 

i3F - =  0 aZ a t  the  tank bottom (z = - h) 

The so lu t ion  of the  Laplace equation 

:an be' obtained with the  transformation 

:by which the  second boundary conditions w i l l  be made homogeneous). 
%e f i r s t  term i n  G(r,cp) represents  the  poten t ia l  a0 of the  r i g i d  i n f i n i t e  - 
:yl  inder . / 

From the  so lu t ion  of the thus obtained Poisson equation 

i t h  the  boundary conditions 

= - 2iw cpo r ( c p  - a) for  r = a,b 
/ 

ar 
& = o  
acp 

fo r  cp = 0 , 2 a  
/ 

e ob ta in  the  value G = G(r,cp). 
_A- - 

The so lu t ion  which s a t i s f i e s  t h e . l a s t  boundary condition i n  cp is  of 
le form 
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, 
Introducing t h i s  i n to  the  p a r t i a l  d i f f e r e n t i a l  equation, we f i n a l l y  

I f  one expands the  function cp on the  r i g h t  hand s ide  
obtain an i n f i n i t e  number of ordinary d i f f e r e n t i a l  equations for  the  
functions R, ( r ) .  
i n t o  a cos-series 

with the  coe f f i c i en t s  

Po = 0 

.- 

these d i f f e r e n t i a l  equations a r e  

d2 Ro dRo 
0 - + - - =  

d r  r d r  

R2m = 0 + - - - -  d2 R2m 1 dR2m m2 
r dr  a2 r2 d r  

4a2 r2 ' r d r  dr  

for  m = 1 , 2  ,..... 
The so lu t ion  of these a r e  for  a # 1 /4 ,  3 /4  with the  boundary condition 
i n  r 
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Ro (r) = 0 

Rb (r) = 0 - - 2m-1 + 2 . 2a 

2m-1 
(1 - k 

- 
(1 - k ) 

1 3  z f i n a l l y  the so lu t ion  G (r,cp) is f o r  a # 

L (2m-1) [ ( 2 m 0 1 ) ~  - 1 6 S J  m = l  
,---- 

- 
2m-1 1 
~- - 

(1 - k 2a) 

The so lu t ion  of  t he  equation AI? = 0 which sa t , J f i e s  t he  homogeneous 
boundary condi t ions a t  the  tank w a l l s  is  

The constants  Cmn a r e  obtained with the  l a s t  boundary condi t ion (43). 

obtained funct ion.  G (r,cp) and s a t i s f y i n g  the boundary condi t ion of t he  
f r e e  f l u i d  surface:  

Introducing t h e  Fourier series f o r  the  function cp i n  the  previously 
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2m-1 
2a r 

‘2m-1 - (‘2m-1,n a -) d r  2m-1 - -  
2a 2a = a  

b sa.‘-- 

the constant Cmn 

Chn = 0 m = 0 , 1 , 2 , 0 0 0 0 0  

i 
/ 

2m-1 2m-1 - - 2m-1 -+ 2 
(k2 - k 2a ) k 2a - Q b - l , n  

(1-k 2a %m-1  ,n - 2m-1 E - 
(1-k 2a ) 

Therefore the so lu t ion  i s  

2m-1 2m-1 - - 
I (2m-1) 

) k 2a: 2a (k2-k - - 2m- 1 4a! g2In-1,Il 
(1-k ) 
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I The f i r s t  t e r m  satisfies the  boundary condition a t  the sector  w a l l s  while 
the i n f i n i t e  s e r i e s  vaGshes them term by term. 
a t  t he  tank wal l s  r = a and r = b y  the double summation vanishes,  while 
the simple summation vanishes together with the f i r s t  term. 
amplitude, l i qu id  forces  and moments, ve loc i ty  d i s t r i b u t i o n ,  etc., can 
be obtained i n  the same manner as the  previous cases by d i f f e r e n t i a t i o n  
integrat ing.  
a# 1/4 and 3 / 4 .  
d i f f e r e n t i a l  equation Rm i s  i n  resonance with the Eigen so lu t ion  fo r  
m = 1 and m = 2. 
sect ion 

A t  the  boundary condi t ion 

Surface 

A s  already mentioned, the r e s u l t s  a r e  only v a l i d  i f  
In  these cases the  non-homogeneous pa r t  of the  

For a cy l ind r i ca l  container with quar te r  r i n g  c ross  

, 
a re  the roots  of C;m,l = o  

2m-1 ,n - where 5 
2a 

The ve loc i ty  po ten t i a l  i s  f i n a l l y  expressed by: 

2m-1 2m-1 - -  - -  2m- 1 - - 
2a + 2  2m- 1 2m- 1 

(k2-k 2a ) k 
- -  (1-k 

2m- 1 - t 
(1-k ) 

h 
(= + a) I cos (- 20 q)  ‘2m-l - (52m-1,n z;) cash [‘2m-l,n a 

- 11 cash (k2m-1,n a 

2m- 1 1: 

0 3 0 3  

2a 
h w 2  

+ 1 
-) 

2m-1 ,n  I[ 

n=O m = l  (2m-1) [(2m-1)2 - 16a2] [ 
W2 

2m-1 2m-1 - -  2m-1 + 

( 4 8 )  
- 

$ 1  2m- 1 (k2-k ) k 2a - q h - l , n  - -  - 2m- 1 4a Q2m-l,n,$ 

[’2m-l,n (1-k 

(1-k ) 

2iw cpo 
R~ ( r )  = C, r2 + D, r-2 + r2 1nr 

the  o ther  so lu t ions  of  the d i f f e r e n t i a l  equation i n  % a r e  the same. 
The in tegra t ion  constants  C1 and D, can be obtained from the boundary 
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n=O 

Similar expressions can be obtained fo r  the  force, moments and for  the  
case a = 3 / 4 .  

D. Special  Case: Cy  l i n d r i c a l  Container with Circular Cross Section 

Let the  r a t i o ,  k = b/a ,  of the  inner t o  the  outer  tank diameter 
approach zero and l e t  a be 1, then we obta in  the r e s u l t s  which are due 
t o  f l u i d  motion i n  a cy l ind r i ca l  tank with c i rcu lar  c ross  section. 
represents  the  container with the s ide  wall  i n  the cp = 0 plane from 
r = 0 t o  r = a. 
Df the  x-axis a t  which the  s ide  wall  does not d i s turb  the  flow f i e l d  we 
Jbtain f i n a l l y  with some l i m i t  considerations the ve loc i ty  po ten t i a l  f o r  
t rans la tory  e x c i t a t i o n  i n  the form: 

i w t  r 
0 a 

This 

Since w e  r e s t r i c t  ourselves t o  v ib ra t ions  i n  the  d i r e c t i o n  

.. (49) 
m r z h  

J1 (En ;) cash [En (s; + 3 I 
I u2 h n  

(r,cp,z,t) = i w  x e a cos cp I- + 2 7  
n=O 
__-I 

(c2 - 1)  J1 (E,) cosh (cn 7 ; > ( ~  -1) n I 
I 

condYtions i n  r. For t h i s  tank type the  ve loc i ty  po ten t i a l ,  the  f r e e  
f l u i d  surface displacement and the pressure d i s t r i b u t i o n  can be obtained 
by s e t t i n g  a = 1/4  and by subs t i t u t ing  for  the term with the index m = 1 
i n  the  simple summation the  value 

/; 

and the  double summation 

the  values  pn and gn and h, a r e  the  coe f f i c i en t s  of  t h e  expansions 

m 
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Here the  values e are the  r o o t s  of t he  equation n 

Ji = (e,) = 0 n = 0,1,2,..... 

and the  na tu ra l  c i r c u l a r  frequency square i s  

(Figure 5) 
h 

w2 = E tanh ( E ~  --) n a n  

where the  f i r s t  values for  t he  E: values a r e  eo = 1.84, el = 5.33, n 
€ 2  = 8.53. 

As already mentioned, it can be detected t h a t  t he  na tu ra l  frequency 
increases with the  square root  of t he  longi tudina l  acce le ra t ion  g, and 
tha t  i t  decreases with increasing t a n k  diameter l i k e  

This i nd ica t e s  t h a t  t he  na tu ra l  frequency of t he  l i qu id  for  l a r g e  tank 
diameters is  smaller than for  s m a l l  tank diameters. The frequency r a t i o  

changes only considerably for  small f l u i d  height h / a  < 1, s ince  fo r  
h/a < 1 hyperbolic tangents can be approximated by unity. The f r e e  
surface displacement i s  given by 

from which w e  can conclude t h a t  t he  f i r s t  t e r m  i s  the  displacement wi th  
respect t o  small exc i t i ng  frequencies. For t h i s ,  i f  one neglec ts  the  
terms w i t h  w4 compared t o  those wi th  w2 the  f r e e  f l u i d  surface is  a 
plane proportional t o  the  form r cos cp. 
amplitude x the  surface displacement i s  increased, while fo r  increasing 
longitudina? acce le ra t ion  of  t h e  container the  disturbances of  the  f r e e  
f l u i d  acce le ra t ion  are s l i g h t l y  decreasing. The f l u i d  force on the  
tank w a l l  is: 

With increasing exc i t i ng  
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Figure  7 .  Free  F lu id  Sur face  Displacement i n  a C i r c u l a r  C y l i n d r i c a l  
Tank for Various E x c i t i n g  Frequencies  

TRANSLATION 2 31 

Figure  8. Free  F lu id  Surface Displacement (Magni f ica t  i o n  F a c t o r )  
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CO h 
tanh (en a) 

F~ = mw2 e iwt x (1 + 2 7  1 
h 2 

0 

n= 1 (En ;> ( € E  - 1 )  

Y 

- -__. 

Figure 9 .  Fluid Forces (Magnification Factor) 

where the  f i r s t  t e r m  i s  due t o  t he  i n e r t i a l  force.  
re fe r red  t o  the  center  of grav i ty  of  the  undisturbed l i qu id  i s  f o r  
t rans  l a t  iona l  o s c i 1 l a  t ion 

The f l u i d  moment 
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Figure 10. Fluid 

z 

Moments (Magnification Factor) 

The first term in the parentheses is due to the moment of lateral dis- 
placement of center of gravity if one considers the free fluid surface 
as a plane of the form co r cos cp. 

h + -L r cos cp 

It is 
- 

X p r2 cos cp dr dcp dz, which is cg m 0 
0 0 0  

X with c0 = tan a = - 
g 

Therefore the moment due to this part is 

I .. - m x.a - - -  
h 4 -  i My = - mg xcg a 



Figure 11. Sh i f t  of Center of  Gravity During Osc i l la t ion  

The s h i f t i n g  of the center  of grav i ty  i n  v e r t i c a l  d i r ec t ion  (2. order 
t e r m )  need not be considered s ince a l l  terms of second order o r i g i n a l l y  
have been neglected. 
shapes and has been worked out for  cy l ind r i ca l  tank with annular r i n g  
cross sec t ion  [Ref. 1 , 2 ]  and for  a c i r cu la r  cy l ind r i ca l  quarter  tank 
of which a few r e s u l t s  w i l l  be given i n  Figures 1 2  - 18. 

Similar r e s u l t s  can be obtained for  any of the  tank 

The theory, however, does not y ie ld  the  answer of  the l iqu id  for  
large amplitudes which occur near o r  a t  resonance. 
the na tura l  frequencies of the l iqu id  . (especial ly  the lower f requencies) ,  
values appear which represent  the  important influence on the space vehicle.  

In  the v i c i n i t y  of 
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w 
0 

Figure 12. Fluid Force for Translational Excitation 
i n  x-Direction of  a Liquid in  a Quarter Tank 
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Figure 13. Fluid Moment for Translational Excitation 
in x-Direction of a Liquid in a Quarter Tank 
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Figure 14. F l u i d  Force for  Rotat ional  Exci ta t ion Along 
the y-Axis i n  a Quarter Tank 

It a l s o  g ives  no answer f o r  the  inc lus ion  of  mechanical suppression 
devices o r  b a f f l e s  of one type o r  another. 
s t i f f e n e r  r i n g s  are almost un iversa l ly  employed t o  reduce the  magnitude 
of forces  and torques from the  l i qu id  i n  the  vehicle.  This means t h a t ,  
due t o  the  complexity of  t he  f l u i d  flow behavior, mathematical treatment 
is  not possible.  Recourse must be made t o  po ten t i a l  theory with smooth 
tank w a l l s  and experimental inves t iga t ions  from which the  damping is  
obtained and introduced i n  an equivalent  way into the  t h e o r e t i c a l  r e s u l t s .  
This p a r t  w i l l  be t r ea t ed  i n  a later report .  

These b a f f l e s  o r  a t  least 

t 
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Figure 15. Fluid Moment for  Rotational Exci ta t ion  Along 
the y-Axis i n  a Quarter Tank 
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Figure 16. Fluid Forces for R o l l  Excitation of a Quarter Tank 

XY 

Figure 17 .  Fluid Moment for Roll Excitation of a Quarter Tank 

e 
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Figure 18. Fluid Moment for Roll Excitation of a Quarter Tank 
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V. CONCLUSION 

The n a t u r a l  frequency of a l i qu id  i n  a cy l ind r i ca l  container  with 
c i r c u l a r  annular s ec to r  cross  sec t ions  increases proport ional ly  t o  the 
square r o o t  of t he  longi tudina l  accelerat ion.  This means t h a t ,  during 
the  f l i g h t  of a space vehic le ,  which increases  i t s  acce le ra t ion  during 
f l i g h t  time, t he  na tu ra l  frequency increases. Only during the  burn ou t  
period the  na tu ra l  frequency of the  propel lant  i s  decreasing again,  
s ince  the  f l u i d  height  influence [tank (En h /a ) ]  overcomes the  inf luence 
of  the  acce le ra t ion  g. 
na tu ra l  frequency of  the  propel lan t  i s  lower due t o  i t s  being proport ional  
t o  1/ 6 This ind ica tes ,  that the  na tura l  frequency i n  l a rge  space 
vehic les  with l a rge  tank diameters i s  very low, thus being c loser  t o  
the  cont ro l  frequency. This is a very unfavorable s i t u a t i o n ,  s ince  one 
wants the  na tu ra l  frequency of  the l i qu id  as f a r  above the cont ro l  
frequency as possible.  
l i q u i d  can a l s o  be obtained by tank geometry. 
therefore  e.g. i n t o  quar te r  tanks increases  the na tu ra l  frequency due 
t o  t h e  r o o t s  of  

I f  one chooses a larger tank diameter, then the 

An increa.se i n  the na tura l  frequency of  t he  
Subdividing a tank 

2a 
As already mentioned, i t  could be seen, that fo r  a tank wi th  c i r c u l a r  
c ross  sec t ion  the  roo t s  of A, s 5: (E) = 0 were c0 = 1.84, el = 5 .33 ,  
etc. 

% t a t  the  lowest na tu ra l  frequency of  the  l iqu id  is  increased by about 
a f ac to r  of 1.4. 

For a quar te r  tank arrangement the  roots  are obtained from 
(E) = 0 and w e  ob ta in  3.832 , E,O = 3.054,  which ind ica t e s  

It w a s  seen, t h a t  once the  v e l o c i t y  po ten t i a l  has been determined, 
the  pressure and ve loc i ty  d i s t r i b u t i o n ,  the f ree  f l u i d  surface displace-  
ment, as w e l l  as t h e  forces  and torques of the l i qu id  could be determiqed 
by d i f f e r e s i a t i o n s  and in tegyat ionswi threspec t  t o  the  spac ia l  and time 
coordinates.  These r e s u l t s  have a t  the resonance frequencies of the  i l i qu id  s i n g u l a r i t i e s ,  which can be eliminated by the  in t roduct ion  of 
damping i n  the resonance terms. This w i l l  be  t r ea t ed  i n  a later report .  
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APPENDIX 
, I  y 

A. Roots of Certain Bessel Functions . For the previdus r e s u l t s  the roots  of 

J' ( 5 )  rn - 
2a 

y' m ( 5 )  - 
2a  = o  

have t o  be  determined for  m = 0,1,2,.... and a r b i t r a r y  0 < k < 1. 
most of these roo t s  J. McMahon represented asymptotic expznsions (Ref. 5 ) .  
The smallest root,,however,,was not known u n t i l  H. Buchholz pointed out  i t s  
exis tence (Ref. 6 ) .  I n  Ref. 7 D. Kirkham gave the  roo t s  of the  above 
equat$on i n  a graphical way for  m/2a = 0, 1, 2, 3 ,  4 .  In  the  numerical 
evaluation of f l u i d  o s c i l l a t i o n s  i n  containers  with an annular c i r c u l a r  
cross sec t ion ,  the roo t s  of A, ( 5 )  = 0 have t o  be known for  var ious 
diameter r a t i o s  k. 
a r e  given i n  Table 1. 
appear i n  a cy l ind r i ca l  container of c i r c u l a r  quarter  cross  sec t ion  
represented i n  Table 2. 

For 

These roo t s  have been determined numerically and 
The roo t s  of the  equation JL (E) = 0 which 

B. Representation of a Function i n  Bessel-Fourier-Series 

The determinant Cm i s  - 
2a 

Its der iva t ive  i s  

which vanishes for  r = a and r = b t h a t  i s  
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C ’  (Amn a )  = CL (Amn b) = 0 - m 
2 a  2 a  
- 

fo r  r = a the der iva t ive  of  C m 
2a 

vanishes ident ica l ly ,whi le  for  r = b the roots  (Emn) = (A,, a)  make it 
vanish.  I 

A funct ion f (r) which i s  piecewise regular  i n  the in t e rva l  

s a t i s f i e s  the Di r i ch le t  condition,can be expanded in to  a Bessel-Fourier 
s e r i e z o f  the form . I 

f (r) = 2 b(f)  C (A r) mn m mn 
(m = 0,1,2,  .....) 

n=O 2a  

the unknown coe f f i c i en t s  of the expansion w i l l  be determined by 
mult iplying both-s ides  of  the equation with r C m ‘Amp r, - 

2 a  

and in t eg ra t ing  from r = b t o  r = a. 
roo ts  of the  determinant Am = 0. It i s  mP mn 

2 a  

Here h and h are  d i f f e r e n t ’  

- 

With the i n t e g r a l  of Lome1 we obta in  
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and the in t eg ra l  on the l e f t  hand s ide  i s  
5 

The in t eg ra l  i s  zero*, i f  one of the following condi t ions is  s a t i s f i e d .  

I n  the  here t rea ted  C i  

condition i s  sa t i s f ied ,  s ince  A a and A b a re  roo t s  of the equation 

cases of f l u i d  o s c i l l a t i o n s  the second boundary - 
2 0  

mn mn 

Am = 0. 

Those terms fo r  which Amn # Amp vanish and one obtains  f o r  the  

- 
2a 

coe f f i c i en t s  

J 
r C2 (Amn r>  d r  m 

2a b 
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For p = n the equation (F) w i l l  be an indeterminate form, which w i l l  be 
t r ea t ed  with Taylor expansion o r  the r u l e  of L'Hospital ,  and is with 
the Bessel d i f f e r e n t i a l  equation fo r  C, 

W e  thus ob ta in  i n  the in t e rva l  b < r ,< a - 

a 

which is due t o  the boundary conditions 

(K) 

is t);e Wronskian determinant. The coe f f i c i en t  b ( f )  mn Here Cm (Ema=lIr 
pn - 

2a 
of the Bessel=Fourier expansion can be determined from 

<. 

I 

i h e  problem t h a t  remains is the so lu t ion  of the r f(r) Cm (Emn I) dr .  - 
2a _. 
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Most of the in t eg ra l s  i n  the previous treatment a re  of the form 

z Cv ( z )  dz ._ s" 
- 
These can be obtained with the help of the Lommel funct ion SKv ( z )  o r  
by in t eg ra t ion  of the s e r i e s  expansion of the in t eg ra l s .  

In tegra t ing  the f i r s t  i n t eg ra l  t e r m  by term and co l l ec t ing  terms of 
one obtains  J v  + 21.1 + 1 . '  

where R e  (Ktp+l) m u s t  be > 0 i f  one in t eg ra t e s  from z = 0 on. 

The second in t eg ra l  i s  obtained by term wise in t eg ra t ion  of the 
s e r i e s  expansion of the Bessel function of second kind. 

It i s  for  (- in teger )  
m 

2 a  
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% 

, 

J; (k6) 

where Jr  ( z )  represents  the logarithmic der iva t ive  of the Gamma function 

u) 

d ( In  r (2 ) )  = - y + (2-1) 1 1 
dz (h+l) (2-1) 

Jr  (2)  = 

h=O 

and 7 i s  the Euler constant .  
as mentioned i n  the text.  

With these r e s u l t s  we obta in  the in t eg ra l s  

Similar r e s u l t s  can be obtained fo r  the in t eg ra l s  i n  r o l l  o s c i l l a t i o n .  
It may be mentioned here tha t  some of the in t eg ra l s  i n  which K is  
1 - v o r  v + 1 can be obtained from the recursion formulas 

v+l v v+l I z v + '  Cv (2) dz = z cv+l (2) = $2 6, (2) - z c; (2) 

In t eg ra l s  which contain i n  the function f ( r )  a In  ( r / a )  can be 
determined i n  the same way a s  previous i f  one performs f i r s t  an 
in t eg ra t ion  by pa r t s .  

C.  L i m i t  Considerations f o r  k --f 0 

The 'previous r e s u l t s  can be appl ied 
c i r c u l a r  cross  sec t ion  by l e t t i n g  k + O  

for  cy l ind r i ca l  tanks with 
The zeros of the deteminai l t  

= o  
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approaches fo r  k 4 0  the  value J’ . 
m 
2 a  - 

This i s  due t o  the f a c t  t h a t  

for  small x and 

for v > 0 and s m a l l  x .  Instead o f  the value 

r 
i n  a r i n g  sec tor  tank the values  of J 

container of c i r c u l a r  sec tor  c ross  sec t ion .  

(smn -) a has t o  be taken fo r  a m 
2a 
- 

With (N)  w e  ob ta in  the values  Lo, L,, L2 fo r  the sec tor  tank. 

.m . W 

(Re > - 1) 

+ 21.1 + 1) 00 2m-1 

2m- 1 (2a (~2m-  1 , n) 2m- 1 
(T) 

J2m-1 + 21.1. + 1 + p + 1 )  - + V I  (4a 2 a  
Ll (Emn) = 

1.1’0 4a ‘2m-1 ,n  

The other  values  can be obtained i n  a s imi la r  way. 
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